JOURNAL OF APPROXIMATION THEORY 80, 76-107 (1995)

Uniform Estimates of Monotone and Convex
Approximation of Smooth Functions

KiriLL A. KoPOTUN

Department of Mathematics, University of Alberta,
Edmonton, Alberta, Canada T6G 2G|

Communicated by D. Leviatan

Received August 14, 1992; accepted in revised form October 27, 1993

We obtain uniform estimates for monotone and convex approximation of
functions by algebraic polynomials in terms of the weighted Ditzian-Totik moduli
of smoothness
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where o(x) := \/l —x? for r=3 and r= 5 in monotone and convex cases, respec-
tively. Together with known results in the positive and negative directions for the
other r this complements the investigation of the rate of shape preserving
approximation in terms of w‘;(f"’,n"),‘,r“,‘ in the sense of the orders of these
moduli. It is also shown that some extra conditions on the smoothness of f allow
direct results in the cases for which the general estimate in terms of

(S, n71), , is not correct. ) 1995 Academic Press. Inc.

1. INTRODUCTION AND MAIN RESULTS

Let 47 denote the set of all continuous functions fon [ —1, 1] such that
A9(f, x)=0 for given geN, for all 0<h<2g¢™", and xe[—1,1—gh],
where Ai(f,x):=%7_o(=1)""(4) f(x+ih) is the usual gth forward
difference. Then A' and A° are the sets of all monotone and convex

functions, respectively.

Shape preserving approximation is the approximation of functions fe 4¢

by polynomials with nonnegative gth derivatives.
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MONOTONE AND CONVEX APPROXIMATIONS 77

The present paper is devoted to the investigation of monotone and
convex approximation, i.e., cases for g=1 and ¢=2.

The rates of the best nth degree unconstrained and shape preserving
polynomial approximation of a function f are defined by

E,(f)= inf [f—p.l.,

Pre Py

EXf)= ol f=pil.,  geN,

Pa€ Py

respectively, where P, is the set of algebraic polynomials of degree n.
We recall that

w,(f,t, [a, b]):= sup max [AX(f, x)|

O<hgt [Mxt+kh]lcla b]

denotes the usual kth modulus of smoothness of f.
The Ditzian-Totik modulus of smoothness is given by

W (fi )= sup 45,00 (fix)l,,  o(x)i=/1-x%

O<h<t
The Ditzian-Totik weighted modulus of smoothness with weight ¢" is
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where

k [k
) e Eo(—1)k~'(l,>f(x+(i—k/z)h) i x+ kb2 <1

0 otherwise

is the symmetric £th difference.
Let I:=[—1,11; plhy):i=h /1 —y>+h, yel, h=0; p:=p(h, x),
xel
For the sake of brevity and convenience of exposition in the uniform
metric we shall use the following definition of the “nonuniform” modulus
of smoothness a‘)’;(f, t) and the “nonuniform” weighted modulus (I)’J”(_ﬁ 1),
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which are equivalent to w®(f 1), and w%(f, 1), .., respectively (see
[5, 14]):

@k (f 1, [a,b]):= sup max |45(f, %), 120,

O<hst [x.x+kplc[a b]

@4 (f 1) =, (1. 1),
@f (f,1):= sup sup |w,(x, k, h) A5 (f, x)|,

O<h<1 (xv,x+kp)clt

where w, (x, k, k) ;== (1 + x)2 (1 —x —kp)’?, (r+ 1)e N. Obviously,
@ o (f 1)= @4 (f, 1),

For k=0let &9 (f 1) :=esssup, . _, (1 —x*)"f(x)].

Throughout the paper C,, C denote positive constants which are inde-
pendent of fand r. In order to emphasize that the constant C depends only
on iy, .., i,,, the expression C= C(y,, ..., i,,) will be used.

All constants C are not necessarily the same even when they occur on the
same line, but C, constants are fixed and denote definite quantities
throughout the paper.

For arbitrary fe C(—1, 1), the function a_)fj,',(f, t) can be unbounded.
However, it was shown in [5] (see also [14]) that the necessary and suf-
ficient condition for cD’;,v,(f, t} to be bounded for all 7 >0 is the existence
of a constant M < oo such that

(1= x2)2 f(x) <M, xe(—1,1).

Let B, r+1eN, denote the space of all functions f such that
feC[—1,1]1nC(—1,1)and |(1 —x?)"f(x)| <00, xe(-—1,1). Thus

B (f )<om, >0 feB.

In order to avoid considerations of trivial cases (when the right-hand
sides of estimates are equal to infinity) we shall have the restriction on f that

it be from the B’ class. Also, let us note that for such functions f, any /=0, »,
and k > 0, the following inequality holds (see also Lemma B below):

GhLT S DK Colr k) @k (f 1), 1> 0. (1)
For unconstrained approximation the following direct result is known.

THEOREM A (see, for example, [5] and [147]). Let ke N, (r+1)eAN.
Then for a given function fe B  on I and eachnzk +r—1,

E(f)<Cn oy (f"n '),  C=Clr k) (2)

Our goal is to investigate the possibility of obtaining the estimate (2) for
shape preserving approximation.
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First of all, the following negative results are known.

LEMMa 1. There is no such constant C that for every nondecreasing
Sunction f on I, fe B, the estimate EP(f)<Cn @) ,(f",n" ") is valid.

Moreover, even the estimate EJN(f)< Ca,, ,(f", 1) is false.

Thus the estimates E'"(f)< Cn~'@% 2~ /(f",n"), C=C(k), generally
speaking, are not correct for 0<I<2 and ke N.

LEMMA 2. Let v=0 be fixed. There is no such constant C that for every
convex function [ on I, fe B, the estimate EX(f)<Cn @), ,(f“,n ") is
valid.

Moreover, even the estimate EC\(f)< Ca), (™, 1) is false.

Thus the estimates EZ(f)< Cn~'o% 1 /(" n"), C=C(k), generally
speaking, are not correct for 0 <1<4 and ke N.

Proof. Lemma 1 follows from [10, Lemma 2] and the estimate
a‘)('p_z(g;;, t}<4 from the proof of Lemma 3 in [10]. Lemma 2 is a conse-
quence of [8, Theorem 2].

It is worth mentioning that for the particular cases /=0 and /=0 or 1
in Lemmas [ and 2, respectively, the lemmas follow from A. S. Shevdov’s
work [15]. |

It will be shown in the present paper that the estimate (2) can be
obtained for shape preserving approximation of functions fe B” with r >3
and r > 5 in the monotone and convex cases, respectively. For the other r
such direct results are known (see [7-9, 11, 127).

Namely, the following theorems will be proved.

THEOREM 1. Let ke N, re N, r=3, and fe B'. If a function [ is non-
decreasing on I, then for every n=r+k~1, r+k, ..

ED(fy<Cn o (fO,n"),  C=Clr, k)

THEOREM 2. Let ke N, reN, r=5, and f€ B". If a function [ is convex
on I, then for every n=r+k—1,r+k, ..

EP(f)<Cn ok (fVn "), C=C(rk).

Now one can summarize estimates of monotone and convex approxima-
tion in terms of cbf,_,. For the sake of convenience we shall present the
results obtained in the form of Figs. 1 and 2. A cross in the position (k, r)
means that for a monotone {(i= 1) or convex (i =2) function f from the B’
class the estimate E{’(f)<Cn "a% (f"",n"'), C=C(r, k), holds. A circle
means that this estimate is correct for not all fe B".
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Fi16. 1. Monotone approximation.

These results are obtained or are derived from the following papers.

Positive results (monotone case)

r=0, k=2, and, consequently, also for {(k,r)|1<k+r<2}
(Leviatan [11])

r=3, k=0 (Dzubenko et al. [7])
r=3, k=1 (present paper)

FiG. 2. Convex approximation.
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Negative results (monotone case)

r=0, k=3 (Shedov [15])

r=2k>21and r=1, k=2 (Kopotun and Listopad [10])
Positive results (convex case)

r=0, k=2, and, consequently, also for {{k,r)|1<k+r<2}
(Leviatan [12])

r=0, k=3, and, consequently, also for {(k,r){k+r=3}
(Kopotun [9])

r=5, k=0 (Kopotun [8])
r=5, k=1 (present paper)
Negative results (convex case)
r=0, k24 and r=1, k>3 (Shvedov [15])

r=4, k=0, and, consequently (see (1)), also for {(k,r)|k+r=4,
r<4} (Kopotun [8], see also Lemma 2)

Thus, investigation of the rate of shape preserving approximation of func-
tions from B” classes in terms of n~ ’(I)fo‘,(f“’, n~') is complete in the sense
of the orders of moduli of smoothness.

However, more detailed consideration shows that some extra conditions
on the smoothness of f sometimes allow direct results in the cases for which
the general estimate is not correct. These conditions are given by the
relation of fto B"H[k, ¢ ] classes. The necessary definitions and detailed
discussions are given in the following section.

2. SHAPE PRESERVING APPROXIMATION OF FUNCTIONS
FROM B"H[k, ] CLASSES

The following construction of @* classes which was created by Stechkin
(see [16], for example) will be useful.

Let @* be the class of all k majorant functions, ie., continuous non-
decreasing functions ¢ = (t) on [0, ac) such that (0)=0 and ¢ %y (1)
does not increase on [0, oc).

Obviously, u’)ﬁ,.,(f, f) does not have to belong to the @* class. However,
the following result is valid: For the function

tk—k
w*(t):=sup——u—)~“’—"-,f—fil—l—), 120,
u

u>t
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the inequalities
af (L <o)< Ck) oy (f1)

hold, and if &% ,(f, 1) >0 as 1 > 0, then w* e ®*.
Also, for any Yy e @* or y ~ 1, ke N, and r+ 1 € N there exists a function
fe C(—1, 1) such that

Clkyy(y<a, , (f. )< Clk) (o).

(Proofs of these statements can be found, for example, in [14].)
Now let B"H[k, ¢ ] be the set of functions f€ B” such that

O (ST 0<y(n),  where yedfory~1.

Thus we have the decomposition of the B" class

B’ = U B H[k, ],
beldlpedory~1}

which, first of all, is complete, as for any function f€ B there exists € ®*
or ¥ = const such that fe B'H[k, y] and &% (", 1)~ (1), 1> 0. Second,
this decomposition is “relatively precise,” as for any y € ®* or  ~ 1 there
exists a function f'e B” such that (1)~ (f", 1), 1>0.

Taking into account all this and also the inequality (1), one can conclude
that Theorems 1 and 2 are corollaries of the following Theorems 3 and 4.

THEOREM 3. Let ke N, ye®* or y=1, and let fe B*H[k, Y] be a
nondecreasing function on [ —1, 1], Then for every n=k+2, k+3, ...

ENAILCn in Yy, C=C(k)

THEOREM 4. Let ke N, ye®* or Yy =1, and let fe B°H[k, Y] be a
convex function on [ — 1, 17]. Then for every n=k+4, k+35, ..

EXNf)SCn PY(n'),  C=C(k).

Remark. For y =1, Theorems 3 and 4 are consequences of the results
obtained in [7] and [8], respectively. In this paper only the case y € ®*
will be considered.

Also, as was shown in [10] (see also [8]), functions f which are being
discussed in Lemmas 1 and 2 belong to the classes B*H[1, const] and
B*H[ 1, const] n B*H[ 1, Ct], respectively.

Now using the following inclusions which are consequences of (1),

BAA[1, 1] B'A[3—1,C2~"], =0 or I,
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and

B*H[1,t1c B'H[4—1,Ct* '], 0<i<2,
and also the fact that
yed =y(n=Crt, 0<t<l, C=const,

one can obtain the following lemmas.

LEMMA 3. There is no such constant C that the estimate E'(f)<
Cn 3(n=") is valid for every nondecreasing function from the B*H[1,y]
class with Y(t)~1, 0 <t < 1. Thus for 1=0,2 and any k >3 — I the estimate
ENAISCn WY(n "), C=Clk), generally speaking, is not correct for
nondecreasing functions from B'H[k, Cy] with y(t)=1* ', 0<r<1.

LemMma 4. There is no such constant C that the estimate EP(f)<
Cn (n ') is valid for every convex function from the B*H[1,y] class
with arbitrary We ®'. Thus for 1=0,3 and any k=4—1 the estimate
EX(f)<Cn Yin "), C=C(k), generally speaking, is not correct for
convex functions from B'H[k, ] with arbitrary € .

For [=4 and any k 2 1 the estimate EP(f)<Cn *Y(n ') is not correct
for convex functions from B*H[1,y] with y(1)~1,0<r<1.

At the same time, the following theorems are valid.

THEOREM 5. Let ke N and let [ be a nondecreasing function such that
e B ATk, ] where y(t)=1* t>0, 0<B <k, and B<2. Then for every
n=k+1, k+2,..

ENAYSCn 2Y(n ) (ie, EV(fy<Cn 2P,

where C = C(k)(1/(2— f)).

THEOREM 6. Let ke N and let [ be a convex function such that
feB*Hk, ), where y(t)y=1t" t>0, 0<f <k, and B<4. Then for every
n=k+3,k+4,..

ED(N)<SCn¥n ") (ie, EZ(f)<Cn 1),

where C = C(k)(1/(4—f)).

We do not know whether Theorems 5 and 6 are valid for all kK majorant
functions  from @* (or even for (1) =t* with other f).
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At the same time, it follows from Lemma 4 that in the case for convex
approximation for B"H[k, ] classes with 0 <r <3 the negative results are
complete since direct theorems are not valid for any & majorant function .
The monotone case is still open for research. For example, little or even
nothing seems to be known about monotone approximation of functions
from the B'H[2, +*] class.

It is also worth mentioning that Theorems 3-6 are generalizations of the
direct results for

Aa'_{B’ﬁ[l,t”] if a¢ N, wherer:=[a] and Bi=a—r
-\ BH[2, 1] if xeN,wherer:=a—1

classes which are obtained in [10].

3. CHARACTERIZATION OF B"H[k, ] CLASSES

We shall write y € S(r, k) ([ 1, Conditions Z and Z,]; see also [16]) if

! 1
rj |//(u)u”'du+t"'[ W) u " du=00(),  1e(0,1].
(4] 7
The following inverse theorem is known (for example, see [5] and [14]).

THEOREM B. Let ke N, (r+1)e N, and y € ®* ~ S(r, k). If for a given
Junction f on [ —1,1] and each n=zk+r—1 the inequality E, (f)<
n="W(n=") holds (if n =0 then we define the right-hand side of this inequality
to be an absolute constant), then

feBH[k,Cyl, C=Clr k).

Now a consequence of Theorem B and the direct results for the shape
preserving approximation which are given above is the following construc-
tive characteristic of B"H[k, y] classes with € &* n S(r, k).

THEOREM 7. Let e &% S(r, k) where
(k,r)e{(k,r) | keN,r=z3}0{(k,r)|k+r<2,keN,r+1eN}.

A function f is nondecreasing and in the B'H[k, Cy] class, if and only if for
eachn=k+r—1k+r, ..

E(f)SCrnp(n™"),  where C=C(r, k).
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THEOREM 8. Let y € ®* n S(r, k) where
(k,rye{(k,rylkeN,r25} 0 {(k,r) | k+r<3,keN,r+1eN}.

A function f is convex and in the B"H[k, C\f] class, if and only if for each
n=k+r—1,k+r, ..

EXA)SCn Y(n "), where C=C(r, k).

Remark. For (k,r)e {(k,r)|k+r>=4, 0<r<3} and any ¢ € ®* N S(r, k)
Theorem 8 is false.

For (k,r)e {(k,0)|k=3} U {(k,1)|k>2} and Y € * n S(r,k) such that
Y(1)= Ct*~ ', t>0, Theorem 7 is false.

For r =2 Theorem 7 is valid in the case (1) =t € ®* and § <2, and for
r =4 Theorem 8 is valid in the case (1) = ¥ € ®* and § <4, with the same
dependance of the constants C on k and f as in Theorems 5 and 6, respec-
tively. In the other cases this question is still open.

4, AUXILIARY NOTATIONS AND DEFINITIONS

Throughout the paper the following notations and definitions will be
used (cf. [7-10, 13, 14]):

A:=p(n" ' x), xel;

1= (x—x7)"?cos’(2n arccos x) + (x — X;) ~*sin’(2n arccos x) is the
algebraic polynomial of degree 4n — 2.

na0 = v ([ aa)

~

Tat0:=[ (r=x)x =0 A 0 dy

1 -1
X (L (y—2x)x;_ 1 — ¥) 551 (p) dy)
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are algebraic polynomials of degree 6y(27 — 1)+ 1 and 6y(2n—1)+4n+1,
respectively.

0= T+ (=) T () dy
and

G =] @l (=a) T, oNdy j=Ta— 1,

where numbers «, and «,, 0<a,; <1, 0<a,<1, are chosen so that
0,.,(1Y=68;,(1)=1—x, (see [8]), are polynomials of degree 6y(2n—1)+2
and 6y(2n— 1)+ 4n + 2, respectively.

sin ntf/2\**2 (7 (sinn/2\¥ T2\ 7!
£ = d
TueD) (sin t/2) (j,[(sin 1/2> ’)

is the Jackson type kernel.

= (e~ )t !
(C — 1)’ ax*t arccos X — arceos y

DC.n‘{(ya X) Jn,i(t)dt’ X,)'EI,

g '{-arccos X 4+ arccos v

is the Dzjadyk type kernel.

¥, €, and { in the definitions above are integers which will be chosen
later.

L (x,fit,,ty, ., t,,,) denotes the Langrangean polynomial, of degree
not exceeding A, interpolating the function f(x) at the points ¢, 5, ..., £, , ;.

For brevity we denote

Ly(x, f, {xo,h})
= Lk (xafs xU’ x0+p(x()’ h), seey x0+kp(x0a h))
Also, for a# b and (x —a)(x—b) <0 let

S(x, 5 a,b) :=fx (y—a) (b—y)dy (fb (y—a) (b—y) dy)_ ,

@

S(x,L,a,6)=0 if (x—a)x—b)>0 and |x-—al<|x—b|, and
S(x, [; a, b)=1 otherwise.
Without further mention the following inequalities will be used:
(= x,, )3<x,_1—x,<3(x;—x;,,), Jj=Ln-1;

Ad<x; | —x;<54 for xel,.
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5. AUXILIARY STATEMENTS

In our proofs we shall use the method from [13] (see also [7, 8]) which
1s a modification of DeVore’s ideas concerning the decomposition of the
approximated function (see [3, 4]).

The following analog of Whitney’s theorem in terms of “nonuniform”
moduli of smoothness “—’Z will be important for the proofs given below.

LemMMma A (see [14, Lemma 18.2 and (18.13)]). Denote py:= p(h, x,).
Let [xg,xo+(k—~1)pol={a,blcl Then for every xela,b], the
Sfollowing inequality holds:

[F(x) = Ly -1 (% f; {xo i DI S CUx — X0l + po)* py * @ (f, 1, [a, 6]).
In particular, for every x € [xy, xq+ (k—1) py]1,
lf(x)_ ka 1 (.’C,ﬁ {xo’ h})< Cu_)l(;;(ﬁ h’ [x07 xo + (k - 1) p()])’

where C = C(k).

The following lemma shows the connection between moduli of smooth-
ness of different orders.

LEeMmMa B [14,Lemma 184]. Let k+1eN, reN, [=0,r—1,
(x, x+(k+r—=1)p)el, and

W2t w5 kv r—L R if I>r/2
G5, h) = Wp =72 In(hw, (x, k+ /2, By p D) if [=r2
hip~! if 1</
If fe B’, then
Z’;*'il(f“’,x)SCGkv,_,(x,h)u')z_r(f(",h), h>0, (3)

where C = C(r, k). In particular, inequality (1) holds.

Because of the importance of this lemma we shall quote its proof
from [14].

Proof. First of all, it should be noted that here and in the proofs to
follow we consider A to be small enough in comparison with r and 4. This
implies that for ye(x,x+(r—1!)p) one can choose #=0(y) so that
p=p(6h, y) and 0 < < C for some constant C.
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|Z:§ (f7 )= |Zﬁ(()h,'.-)(f(r)s i3]
<C(1+y) "2 (1= y—kp(6h, y))" " @k (S, Ch)
SC(L+y) P (1—y—kp) ot (f7, h)

Using the formulae for integral presentation of the usual differences we
get

T, )

” 7o
.fo L A:‘,(f"’,x+1”+ cdu,)duy-du,

I

p .
<C@'L.r(f(r"h)j f A+x+u+ - +u, )"
0 0
x (1= x—uy— e —u, = kp) Py du,
S CGk./.r(x’ h) a_)l;_,(f(r), h)

Thus inequality {3) is proved. Inequality (1) is a consequence of (3) and of
the estimate

G, YSCH wix, k+r—5Lh) "L |
Remark. Another consequence of (3) is the estimate
KT < Cr ¥k (), >0 and  I<r/2.

For 2/=r we have sup G, ,,(x, h})= + oo which presents the main dif-
ficulty in this case. In fact, these will be the cases for r =2 and r=4 for
monotone and convex approximations, respectively.

It turns out that the estimate (3) can be improved for some classes of
functions. Namely, the following result is valid.

LEMMA 5. Let le N, fe BYH[k, ¢] with y(t)=t' e ®* (ie, 0<f<k)
and such that f <2l. Then the following estimate holds:

45 (SO )< CRp~(h), (v, x+(k+1)p)c(~1,1)

and h> 0, where C= C(k, 1)(1/(2]— B)).

Proof. The beginning of the proof is analogous to that of the previous
lemma. First, using the formulae for integral presentation of the usual
differences we get
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P

A, x) = 4% (J Ipf‘z”(- Fuytur+ - ) du, '-'du,,x>
] 4]

° o
:Jo '“L A xuFuy+ U duy - duy
=: O(x).

Now if [x, x+kp]<=[—~14h% 1 —h*] and x <0 (for x > 0 considerations
are analogous), then

14 o
O <[ [ 18, 1 (£, )1+ 3) (1= y —kp(Bh, )]
(4] 0
X (14 )7 (1= y = kp(6h, )~ duy - du,,
where y:i=x+uwu, +u,+ ---+u, and 60=06(y) is chosen so that

plh, x)=p(6h, x+u +u,+ --- +u,).
This yields

‘@(x)l scj.:-[: Sup Sup

O<h<Chye[—t+A1—H)

X |38 G SO0, 9wy (3, ke, (14 X) ™ duay -~ du,
scj"---r.//wh)(l 4 x) ' du, - du,
0 0

< Cp'(1+4 x) " Y(Ch)
<Ch¥p~y(h), C=Clk,1).

Now let us consider the case —l<x<—1+h%* (if [x,x+kp]N
[1 — 4% 1]# &, considerations are analogous).

The following Shevchuk’s identity will be employed (see [14, identity
(1.27)]):

Let (N+1) given points y,, vy, .., ¥y be such that (M + 1) of them
coincide with x,, x,, ..., x,,, where N> M = 2. Then the following identity
holds:

N—M
[X0>xl"“9 XM;f]= Z (,Vn+M_yn)[yn""’ yn+hl;f]
n=0

X [ X0y coes Xpgi I 111,

M—1

where 1T, 5, (x,) :=TL2," (x,~ ¥us,)s-

640/80:1-8
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We fix y:=x+u,+u,+ --- +u;, choose m>=1 so that p/(2"—-1)<
y+1<p/(2" ' —1) and denote v :=p/(2" —1).
Let m+ k points z; be defined by
z;=y+ (2" =)y, i=0,m;
zi=y+(i—m+1)p, i=m+1,m+k—1.

Now, A5(f 0, py=[p, y+p, o y +kp; f@D] p*k .
At the same time, for £ > 2, choosing M =k and N=m+ k — 1, we have

m 1
[}" )'+p’ sy }"+kp§f(2”] = Z (Zn+k_zn)[zn’ b Zn+k;f(2[)]

n=0
x[wy+p,,y+kp, I, ,],

where

k-1

H:;,k()’+l'P)5: I—I (J"+5P—zn+1)+, i:ﬁ—;—i{-- (4)

j=1

Each term of this sum will be examined below.
First of all, let us note that (z,, ,—z,)~2"v for all 1=0, m — 1. Now

[ AR A |

_ f(ZI)(zll+l)—Lk7l(zn+l;f(zl); Zys Zn+27 Zn+3’ ey Zn+k)

(Zn+]‘zn)(znatl——Zn+2)(zn+l_le+3)'.'(zn+l_zn+k)
< C(znv)~k |f(2”(zn+l)_zk—l(zn+l’f(zu; {Zna Z})

. 2! 'd .
_Lk 7—1(2n+1’f( )—Lk,l,z,,, Zn+25Zn43s e zn+k)\

whereiis chosen so that z,+ (k — 1) p(h, z,)=2,.x, Which implies that

B~ \/2"v.

Taking this into consideration and using Lemma A we have

|[Zn’ iade) Zn+k;f(2“]l
SC2") o5 (f%, /2 (20 2044 1)
=C(2™v) % sup sup

0<hs /2 z:[zz+kp(z)] < [z, 204 £]
gk 27
x |85 (2D, 2)]
< C2™)*supsup bwa(z, ki, B) A4, (£, 2)]
h z

<C2™) *Y(/2), C=Clk, 1),
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Now [[y,y+p, .. y+kp, IT, ]} with O<n<m—1 will be estimated.
First, let us consider the case n<m—k+1. Let

k—1

e (2)=]] (z—z,, ), zelyy+kp]
=1

and

N o pk——l(z) ]f z<2n+k*1
Prea(2)= {0 otherwise.

Then the equality
M, (2)=1] =z, ) s =P 1(2) =P 1 (2)

gives

I y+p,y+ko; I, =Ly, y+p, .. y+kp; pr 11|
=P (I (kP TT<CpF2m)* L,

Now if m—k+ | <n<m—1, then 2"v~2"v ~ p. This yields

k k-1

Ly y+pwy+bkps I, U<Cp 5 Y T (y+ip—z,45),

i=0 ;=1

<Cp '<Cp 2vy-!,  C=Ck).

Now putting all these estimates together we get the following:

m—1
I y+p o y+kps fEOSCl, D p™F Y (2%) "Y(/2™).

n=0

Thus, using the inequality f < 2/, one has

1450, ») < Clk, 1) Z "+ 1) (/2" + 1))

P
n=0
<Clk, 1) Y (2"(y+1))~'*#7
n=0
SCk, D(y+ 1) "HA2 2+t
1

< s =1+ B2 .
<Clk, 1)(y+1) T



92 KIRILL A. KOPOTUN

And now the desired estimate emerges as

I P
l@(X)ISCL L (x+u,+ - +u,+ 1) gy, ... du,

{IZ’((xH)m,xl if /J’/2¢N}
<c{'% | .
|4 ((x+ 1) In(x + 1), x)| otherwise

1
< Ch? h C=Clk,l) 7.
C where ( )21_3

The last inequality is a consequence of Dzjadyk’s [6, p. 160-161] under-
standing that if f/2€ N then /> /2 + 1.

For k=1 considerations are simpler. The difference is that instead of (4)
one should consider the identity

m—1

(roy+po/®=p " Y (uir—z)2m Zas 3 /P01

n=0
Thus the lemma is proved. [

In our proofs we shall deal with the first derivative of a function f in the
monotone case and with the second one in the convex case. Obviously, the
condition fe B, re N, implies that fe C¥(—1, 1} for all u <r. However, it
would be more convenient to have the continuity of the derivatives on the
closed interval 1.

The foliowing lemma gives sufficient conditions for a function f to have
continuous derivatives on [—1,1].

LEMMA 6. Let ke N, (r+1)eN, peN, ye® be such that
j}) V() u=+ =V du < + 0. If for a function f and each nzk +r—1 there
exists a polynomial p, € P, such that

f(x)=pa () <n~Y(n™"),  xel,

then fe C*[ -1, 1].
Despite the fact that this lemma is probably known to the reader, its
proof is adduced here since the author failed to find any references to it.
Proof. For any nye N the series T, (pyn+1(x)— par{x)) converges
uniformly to f(x)— p.w(x) as M — o0, and

|pas i (%) = pu(x)| <2' Y27, xel
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Applying Markov’s inequality one has
Pl i(x) — pW (x)| < C2¥™ "y (27, xel

This implies

M8

= o} 2-n
L)~ pPHISC Y [ w () du
n=ng 27"

n

0

= cjm 2T () d < oo,
0

Thus fe C*[ —1, 1] and the proof of the lemma is complete. ||

The following corollary is a consequence of Lemma 6 and Theorem A.

COROLLARY. The following implications are valid:

feB*HLk, y], yed=feC'[-1,1],
feB?H[k,t*], O0<B<k=feC'[-1,1],
fe BPH[K, y], yed =feC[-1,1],

fe B*H[K,1f], O<f<k=feCH—1,1]

LEMMa C (see [13], for example). Let p+1eN and g+ 1€ N. The
Dzjadyk-type kernel D, :(y,x) is a polynomial in x of degree<
(E+ 1)(n—1), and the following inequalities hold:

P

Ex_pDC,n,f(y’ x)

SCAﬁfp—l('x—y[ +A)*¢, C=C(p, ¢ 0);
1 a°
E 71(Y*x)qa_x;DC,,,,:(y,x)dy_%q

<Cu ML =G0 C=C(p, g, 8, D),

where 8, , is the Kronecker symbol, and the integral in the last inequality is
a polynomial of degree < q— p (it is identically equal to zero if q < p).

Now let us note that the methods of proofs of Theorems 3-6 as well as
of all auxiliary statements are the same. In connection with all this it would
be inexpedient to give their proofs separately. In order to make this paper
more readable and, on the other hand, not to lose in the fullness of exposi-
tion we shall give the complete statements of auxiliary propositions for all



94 KIRILL A. KOPOTUN

four cases, using the following abridgements. For the sake of convenience
throughout the paper, in the wording B*H[k, ] and B*H[k, y] it will be
implied that y(1)=1f,0<B<k, f<2 and Y(1)=1tF, O<B<k, f<4,
respectively (however, most of the statements are true also for all functions
i € ®*). We shall also use the notations [m i], [m_ii], [c_i], and [c.ii]
in order to emphasize cases designed for the proofs of Theorems 5, 3, 6, and
4, respectively. Also, we set variables = and A to have the following definite
values in these cases:

[mi]&E=1,4=2; [mai]E=1,4=3;
[ci]E=2,1=4, [cii] Z=2,4=5.

Thus, in order to follow the proof of Theorem 5, for example, it is enough
to pay attention to the statements marked by [m_i], understanding that in
this case E=1and A=2.

The following theorem is a generalization of the direct theorem
(Theorem A) for B*H[k, y] classes.

THEOREM 9. Let a set FclI and a function Q be such that
Qe B'H[k, ¥] and Q')(x)=0 for xe F. Then the polynomial

dy (6, Q)= [ (Q(y) = Q03 Q) Depe(3 3) dy +2(x, ©)

approximates @ and its derivatives so that
Q" (x)—d(x, Q)

E—2k-24A+25—1
<Clnﬂidiplﬁ(,rl)(d~i—dlst(vc, I\F) )
0<

xel, p+1leN, and P<LE,
where the polynomial Q(x, Q) is defined by

[m] Q0 0)=0(~1)
7 Liaoa(z 0 (~ 1,265 A=2) ) dz,

[c-] Q(x,Q)=0(-1)+Q'(—1)x+1)

X I3
+'[ .f Liiazs
1921

x(z, 0" {—1,J/2(k+A—3)""})dz dr.
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Proof. In order to avoid overloading of the text by unnecessary nota-

tions let us give the proof in the case [c_i]. The proofs for other cases are
analogous.

Denote g(x)=Q(x)—Q(x, Q). Then geB*H[k,] and applying
Lemmas A, B, and 5 we get

|g(x)|=“f1j'l(Q"(z)—Lm(z,Q",{—L 2(k+1)""})>dzdz
<y ,5(Q" D CY(L)

Thus

1 al”
Q)= d'P(x, 0)= g ()~ | £(y) 55 Dene(y X) b

— 1 ox’

Now let x be fixed and, for convenience, such that x+ (k+ 1)4<1.
Denote

)= g+ D=2+ [ [ Liyi g’ {xon ) ded

and note that /'P(x)=g""(x), p=0,1, 2.
For ye[x, x+ (k+ 1)4] we have the estimate

HON<T(y)— g + gy < Cy(1)
[ [ e o D= g d
< CP(1)+ Ca* 2 (g" n ') < CY(1),
Therefore, applying Markov’s inequality for all j=0, k + 3 we have
I < Ca- (1), yelx,x+(k+1)4]

and, in particular, |/(x)] < C4 /(1)
We expand the polynomial /() in Taylor series

k+3

Ky)=Ix)+ Y

J=1

j—' (y—x) I9(x).
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Thus
1 ap
£7C)=[ #0)3 5 Denelr.x)dy
p

! d
=] U -8 55 Denclrx)dy

k+3 1 ) 1 ;L
+ 2 j—,l‘-”(x)(&,-_,,p!—f l(y~x)’5;Dc,n,¢(y,X)dy>
j=olJ* _
k+3 1
=A(x)+ Z j—‘B(x,j).
j=0J"

Using Lemma C and the above estimate for /Y)(x) we have

k+3

k+3
i lB(X,])’ < Z CA 7jk/I(1)n\min{2<5+l,;+(l~(—1]¢)/2}
/=0l j=0

<CA—k-—3‘ll(1)n7min{2§+1.C+(1‘(*1)‘:)/2}
<CA—k—:sl//(nfl)nk~min(2¢+1.C+(1*(*UC)/2}
SCn 4 %P Th(n 1),
The last inequality is true if
min{26+ 1, {+ (1 —(=1)")/2} =2, —k—4 and Ezk+6.

Now let us estimate A4(x), using Lemma C and the following estimate:

1)~ g <[ [ 1Lii(zg’ {xn )~ g"() dzdr

|Y"xl +A>2k+4

<C|y—x|za_)’;+2(g",n“1)( Y

ly—x|+4

U+ 4
<cly=xt(E=EE) s o, el

Thus we have

AENSC[ 10— g 4777 (x =yl + )4 dy

1
ScJ‘ l('y_x| +A)2k~f+6A§~p—2k—7n74l/l(nwl)dy
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<CA~‘*P*2k*7n-“l//(n*')j (4 A)HRE gy
0

<CA=Pn~%(n~'), with ¢—2k—8>0.

The estimate of the theorem is proved in the case x ¢ F.

Now if xe F, then g"(x)= —L, . (x, 0", { =1, /2(k+1)7'}), ie, g(x)
is a polynomial of (k+ 1)th degree on F. Thus if [x,x+(k+1)4d] < F,
then /(y)= g(y) for ye F, and therefore for these x

| A(x) SCL\F(ly—)q +A)F-EH6 Aé—pfqun*“w(n’l)dy

4

4 l E~2k—1
<O a0 ) (T

The case when xe F and (x+ (k+1)4)¢ F follows from the above, since
in this case dist(x, I\F)~ 4.
The proof is complete. |

Remark. In the proofs of Theorem 9 for the other cases it is sufficient
to have the following inequalities: min{2&+1,{+(1—(—1)")2} >
2 —k—4,E-2k—-1020.

LemMma 7 [m-] ([7], see also [137]). Let E be a union of some inter-
vals I,. Then the polynomial

0.(x,E):i= Y (T,.(0)=T,.(x)
ie{i| L eE)
of degree <6x(2n— 1)+ 4n+ 1 satisfies the following inequalities:
(1) 10.(x, E) €Cy, x€1,
(2) OL(x,E)=—~Cy4 ', x€E;
(3) Ou(x, E)=CA™(4/(4 +dist(x, E)))'*~!, xe I\E.

LemMMA 7 [c_] (see [8]). Let E be a union of some intervals I;. Then the
polynomial

Qn(x’ E) = Z (xj,fl_xj‘)_l (o-j,.n(x)_a-j;vn(x))
ieli|jeEl 1 1€E}
of degree <2(3x+ 1)(2n+ 1) satisfies the inequalities:
(1) 10.(x, E) <Cy, x€l,
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(2) Ou(x,E)z2—C347? x€E;

(3) Ou(x, E)=C,aXd4/(4 +dist(x, E)))'** =2 xe\E,
where E:=E\{I, | I,,,¢E}.

Lemma 8 [m_] ([7], see also [137). Let 0<g'(x)<A™, xel, then

the polynomial R, (x,g)=g(—1)+37_ (g(x;_1)—g(x)) T,.(x) of
degree <6y(2n— 1)+ 1 is nondecreasing on I, and the following inequality
holds:

lg(x)— R, (x, g)| <Cs, xel

LEMMa 8 [c ] ([8]) Let 0<g"(x)<A4 72 xel, then the polynomial
Rn(x’g) = g(xnrl)+ [xn’ xnfl;g](xﬂxnfl)

” 1
+ Z [x_/+1, Xjy X l;g](xj— (= X4 1) aj.n(x)

j=1

of degree < 6x(2n— 1)+ 2 is convex on I, and the following inequality holds:

|g(x)— R, (x, g)l < Cs, xel

LEMMA 9. Ler a function g€ B"H[k,y] and a set 3;, which contains
2k+24~22—1 neighboring intervals I;, ie, $;=0L0l U .. U
Lswiaz-1) be given If for every i=0, 2(k+4—=-1) there: exists
a point %el, , at which |gF (%) <n "Y(n 'Wp(n', %,))"% then
(g5 U(x)| S Cen "(n"y4 = for all xe §,.

Proof. The identity

g () =g (X) =Ly 4 = (685 (X a0sa—z—1pn 7))
_Lk+,1—5——I(x,gff'_LkaAf.E'fl,,\70,_‘?2,)~C4,..., '%2(k+,47,571))
+ Lz (%85, X0, %oy Ry s Koy ao =0 1))

the inequality

]g(s)(x)_Lk+A—E 1(%8(3), {xj+2[k+/lf 5711,”7‘}”

SCott" Fn ', g¥, 8)<Cn "4 FY(n), xed,
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which is a consequence of Lemmas A, B, and 5, and the estimate

‘Lm(x’f;ao’alamaam)'
<( max_|a,—a))"( min |a,~a))"" max |f(a)|
h 0<i,j<g 0<ig

0<ijsm <ijsm <i<m

complete the proof of the lemma. |

6. DECOMPOSITION OF APPROXIMATED FUNCTIONS
Let a function f belong to 45~ B4H[k, ¢].

DeFiNtTION 1. The interval /; will be called an interval of typel if, for
all xel,

SE(x) € ColCy+ Ca)n M(n 'y 4%
an interval of type 1l if it is not an interval of type I and, for all xe [,
SEU) 2 (Cs+Cyn~MY(n=')y 4™ =

Let all other intervals be of rype I11.
We denote intervals of types 1, II, and IIl by E,, E,, and E,, respec-
tively.

Remark. 1t follows from Lemma9 that there cannot be more than
2(k + 4 — = —1) neighbouring intetrvals of type III, i.e., each set §; contains
at least one interval of type I or II

Now let the set [m_] E,UE; [c.] E,VE;u{l,eE,| I, ,¢E,} be
presented as a finite union of nonintersecting intervals. Let G, be the
set containing all those intervals which include not less than 4k + 10
intervals [;:

G =[x

J\,xjg]u[x' xj;]u ) 0<jv<jv+l<n'

Yiks
Let us denote j,:=j,+5(1+(—1)") and let S,(x):=1 if |x;|=1, and
S, (x):=S8(x, k+4;x,, %;) il |x;,|s#1 (see Section4 for the definition of
S(x, 1, a, b)).
DerFNITION 2. Let g,(x):=0 for x¢ G,
g:(x):=f%x) S, (x) for xelx,,x;]

and g,(x) :=f¥'(x) in all other cases.
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Denote g,(x) := f)(x)— g,(x) and

(m-] i) =f=D+] gy,
f2(x) :=J; 2:2(y) dy;

(] A0 =f=0+r =D+ 0+ [ g

A= [ etdear

Obviously, the following correlations hold:
Si(x)+ f2(x)=f(x),
g1 (x)=0and g,(x)=0 forall xel
LEMMa 10.  The following inequality holds:
gi(x)<Con M(n" Y4 =,  xel

Proof. Analogously to the proof of Lemma 9, one can show the validity
of the estimate fE(x)<Cn="(n )42 xeG,. Together with
0< S,(x)< 1, this proves the lemma. ||

LEMMA 11.  The function f, belongs to B H[k, Coyr].

Lemma 11 is a consequence of the following lemmas.

LEMMA 12 [m_]. Let the interval [a,b]<[—1+n% 1 —n"?] be such

that la—b| ~\/1 —a®/n, where n is a fixed natural number which is suf-
ficiently large. And let a given function ge B"H{k, ¥ 1, r > 1, be such that

lg'(x)| <n~Y(n~"Wb—a)"!,  xel[ab].
Define the function G so that
G'(x):=g'(x)S(x,a,b), —1<x<1

and G(—1)=g(—1), where [ 2k +r.
Then Ge B'H[k, Cy ] with C independent of n.

LEMMA 12 [c_]. Let the interval [a,b]lc[—1+n%1—n"2] be
such that |a—b|~./1—a*/n, where n is a fixed natural number which
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is sufficiently large. And let a given function ge B"H[k, ], r=2, be such
that

1g" () <n Y(n™Yb—a)"%,  xela bl

Define the function G so that G"(x):=g"(x)S(x,l;a,b), —1<x<1,
G(—1)=g(-1), and G (—1)=g'(—1), where I=zk+r.  Then
Ge B H[k, Cy ] with C independent of n.

We shall prove Lemma 12 [c-] for [a, b]c[—1+1r% 0] (for b=0
considerations are similar). The case [m_] is analogous with the only

difference being that instead of the second derivatives one should deal with
the first ones.

Proof of Lemma 12 [c_]. We shall use the fact that the interval [a, b]
is separated from the endpoints of the interval [ —1, 1]. Also, it is enough
to consider the behavior of G “near” the interval [a, 4], as outside of
[a, b] G either is a linear function or it coincides with g.

Namely, it is sufficient to prove that

sup sup [(1+x)72 A, (G, x)l < CY(1),

O<h<r [x,x+kp}in[a bl

where ¢ is such that ¢ < (10kn)~".
Now let 0 < h< ¢ be fixed and note that if [x, x+kp]n[q, b]# & then
xel[a—3k . /1+ah b] and the following holds:

(1+x)~(1+a) and p~Sl+xh~/1+ah (5)
For convenience denote S(x) := S(x, /, a, ) and note that
ISP <Clb—a)~?, p=0,Lxel (6)

(In fact, S'(x)=0 for xé¢ [a,b] and p=1).
We shall use the Marchaud inequality for the usual moduli of smooth-
ness (see, for example, [5, 6, 14])

b—a
w(tg: [0 b < ([ u oy (g Lo b da

+(b‘a)7j ”gn[ab]>’ J:lak_]a

and the Besov inequality [2] which is given by
lg" M rum < CUb—a) ' o, (b—a g [a,b])
+(b—a)™’ glltan)s .}'=0-,_V-
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Now using (6) and also the identities
G = (g"S)'“ 2) rih (r _ 2) g(i+2)S(r~i72)
i=0 !

and
k

_ kN _. - )
A:(gngax()):Z () j;,(gnxo)A/;, (g4, X0+ jh),
i=0
we have for xoe[a—3k. /1 +ah,b]
_ ok o r=2\/k X
[45(G, xo)| < C Y Z( . )( .)Pk*’

i=0,=0 ! 7]

X (b_a)i+j+2—frwk IZL(g(2+i), xO)"
Now (5) and the Besov inequality yield, for 0<i<r—2,
g™ PNpam<CUb—a)y ™" o (b—a,g"; [a,b])
+(b=a) 18" runr)
<C((h—a) " (1+a) ?Y((b—a)l+a) '?)
+h—a) "TPnY(nh)
SCh—ay " (1 4+a)y P Yn ).

Using the last estimate, (5), and the Marchaud inequality, we have for
j<k+r—i—-2:
@), (1,8 %; [a, b])

~w;(/14+at,g""?; [a,b])

h—ua
<C(1+a)” tf'(j T o (g [, b)) du
v ltat

t(h—a) ug“”'n[u,b])

b—a

<C<1+a)f"2zf(j W (14 a) R Y+ @) ) du
v

T+at

+(b—a) " (1 +a) " yY(n ')>
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SC(+a)V="2 =5 y(1)

bh—a
X<(1 _+_a)7k,€’2j uk+rfi7j—3 du+nk(b_a)ri¥j2>

V'rl +at

SC(1+a)V "2 p=*(tyn Kb—a) "~/ (7)
Note that k+r—i—j=2 only if i=r—2 and j=k, and thus
ok (1,87 [a, b]) < C(1 +a) " Y(1); ie, (7) is true in this case also.
Now putting all these estimates together we have the following
inequalities for any x,, such that [x,, xo+kp(h, xo)Jn [a, b] # O:

I(1 +xo)r‘/2 Zf)(G(", Xo)]

sCrZz i (’fz)(k) P b ~a) F (1+ayY?n = (1)

i=0,;=0 { J
r—2 k _

<C} X (r iz)(".) (b—a) * (1+a)” n "y (1)
i=0j=0 J

< Cy(r)

Thus the lemma is proved. |

Denote & :={I,| I,e E,, ;¢ G,} (clearly, § = E, in the case [m_]) and
G, = {x | dist(x, &) <3* 74}

It follows from Definition 2 that g,(x)=0 for xe I\G,. Note that for
n, = n the following inequality holds:

p(n, ', x) 4
- —— < Gy — .
dist(x, G,) + p(n[ ', x) dist(x, &)+ 4

Now we choose &, {, and y so that all the conditions in the proofs above
are valid. For example, & =24k, { =48k, and y =k will do.
The following lemma is a consequence of Theorem 9 and Lemma 11.

LEMMma 13. For any integer ny=2n the polynomial d
JSollowing properties:

(x,f5) has the

ny

falx)—d, (x, )] < Cipn” W(n1,
dF(x )2 —=Cun M(n Npn; ' x)) %

A 12k
x| ———— , xel\&
4+ dist(x, &)
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and
di(x, )2 (C3+ Cy)n " p(n )47 %
—CunyWny " Wen; ', x))" %  xeé,

where C,y=C,Cy and C,, = C, CyCi%*.

7. PrROOFS OoF THEOREMS 3-6
Let n, e N, n, = n. Denote

T (X) =0 (0 ™") 0, (x, €) + dyy (X, f2) + R, (x, 1)),

Then 7, (x) is a polynomial of degree < 50kn,.
It follows from Lemmas 7, 8, 10, and 13 that

|f(x) =7, (X)) S(Co+ Cio+ CsCy)n " (n 1), xel,
TT(,,T:,(X)Z (CaCran™Mp(n=')4—%
—Cyn W(n Ypny ' x)) %)

A 12k
X(A+dist(x,£‘)> » Xel\d

and

' (x) 2 Con MY(n ) 4=
—Couny Wl Npln ', x)75 xed,

where C,, = (3% 72"
Now let us choose n, so that n,=C;n where
{[4C,,/C,C;]+2} e N. Then the following inequalities hold

[m_ai]} 7, (X)>0, xel\(/, v ],),
n;l|(x)> _Cll¢(n71)’XEIl UIn;

[m_ii] m, (x)>0,xel;

[c-i] n, (x)>0, xe \([, v 1),
i (x)> —C(n~ '), xel,Ul,;

[caii] i (x)>0,xel

Thus Theorems 3 and 4 are proved for n = C;.
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In order to obtain analogous results for Theorems 5 and 6, the following
lemmas will be useful.

LEMMA 14 [m_]. For the algebraic polynomial of degree < 5n,

o sin(n/2 arccos t) \'°
M, (x) ‘—.[,1(" sin(1/2 arccost)) ’

the following inequalities hold:

M, (x)=0, xel,
0< M, (x)<10%~2,  xel,
xel,.

M (x)=27",
LEMMA 14 [c.]. For the algebraic polynomial of degree < Sn,

x v [ sin(n/2 arccos ) )10
= dy,
M (x) Ll j,, (n sin(1/2 arccos t) dt dy

the following inequalities hold:
M (x)=20, xel,

O< M(x)<2x10%7%,  xel,

M (xy=z2710 xel,.
Proof. Lemma 14 [¢_] is Lemma 8 from [8]. Lemma 14 [m_] can be

verified by direct computations with the use of inequalities 2¢/m <sin < ¢,
0 <1< /2, or, applying Markov’s inequality, it can be immediately derived

from Lemma 14 [c_]. |

Now the polynomial
Ta(x) =1, (x) +2°C Y(n )M, (x) — M, (~x)),
Ty (%) +27°C Y (n™ )M, (X) + M, (— X)),

of degree < 50kn, satisfies Theorem 5 in the monotone case and Theorem 6

in the convex one.
Thus Theorems S and 6 are proved for n> C\;.

640,80/1-9
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For the other n, the theorems are consequences of the cases n =4k + 1 for

Theorem 5, n =k + 2 for Theorem 3, n=%k + 3 for Theorem 6, and n=%k +4

fo

r Theorem 4, for which it is sufficient to choose
7, (x) :=Q(x, f)

2\ ¢
+ Smax{Cy(2, k), Co(3, k), Co(4, k), Co(5, k) g <ﬁ> X~

The proofs of Theorems 3-6 are now complete.
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